Differences between magnetoencephalographic (MEG) spectral profiles of drugs acting on GABA at synaptic and extrasynaptic sites: A study in healthy volunteers

نویسندگان

  • David Nutt
  • Sue Wilson
  • Anne Lingford-Hughes
  • Jim Myers
  • Andreas Papadopoulos
  • Suresh Muthukumaraswamy
چکیده

A range of medications target different aspects of the GABA system; understanding their effects is important to inform further drug development. Effects on the waking EEG comparing these mechanisms have not been reported; in this study we compare the effects on resting MEG spectra of the benzodiazepine receptor agonist zolpidem, the delta sub-unit selective agonist gaboxadol (also known as THIP) and the GABA reuptake inhibitor tiagabine. These were two randomised, single-blind, placebo-controlled, crossover studies in healthy volunteers, one using zolpidem 10 mg, gaboxadol 15 mg and placebo, and the other tiagabine 15 mg and placebo. Whole head MEG recordings and individual MEG spectra were divided into frequency bands. Baseline spectra were subtracted from each post-intervention spectra and then differences between intervention and placebo compared. After zolpidem there were significant increases in beta frequencies and reduction in alpha frequency power; after gaboxadol and tiagabine there were significant increases in power at all frequencies up to beta. Enhancement of tonic inhibition via extrasynaptic receptors by gaboxadol gives rise to a very different MEG signature from the synaptic action of zolpidem. Tiagabine theoretically can affect both types of receptor; from these MEG results it is likely that the latter is the more prominent effect here.

منابع مشابه

GABA-mediated membrane oscillations as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus

Spontaneously occurring neuronal oscillations constitute a hallmark of developmental networks. They have been observed in the retina, neocortex, hippocampus, thalamus and spinal cord. In the immature hippocampus the so-called ‘giant depolarizing potentials’ (GDPs) are network-driven membrane oscillations characterized by recurrent membrane depolarization with superimposed fast action potentials...

متن کامل

GABA-mediated membrane oscillations as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus

Spontaneously occurring neuronal oscillations constitute a hallmark of developmental networks. They have been observed in the retina, neocortex, hippocampus, thalamus and spinal cord. In the immature hippocampus the so-called ‘giant depolarizing potentials’ (GDPs) are network-driven membrane oscillations characterized by recurrent membrane depolarization with superimposed fast action potentials...

متن کامل

Extrasynaptic and Postsynaptic Receptors in Glycinergic and GABAergic Neurotransmission: A Division of Labor?

Glycine and GABA mediate inhibitory neurotransmission in the spinal cord and central nervous system. The general concept of neurotransmission is now challenged by the contribution of both phasic activation of postsynaptic glycine and GABA(A) receptors (GlyRs and GABA(A)Rs, respectively) and tonic activity of these receptors located at extrasynaptic sites. GlyR and GABA(A)R kinetics depend on se...

متن کامل

GABA Potency at GABAA Receptors Found in Synaptic and Extrasynaptic Zones

The potency of GABA is vitally important for its primary role in activating GABA(A) receptors and acting as an inhibitory neurotransmitter. Although numerous laboratories have presented information, directly or indirectly, on GABA potency, it is often difficult to compare across such studies given the inevitable variations in the methods used, the cell types studied, whether native or recombina...

متن کامل

Characterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures

A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • Neuropharmacology

دوره 88  شماره 

صفحات  -

تاریخ انتشار 2015